Colombo Suburban Railway Project ; Transport Project Preparatory Facility 3425 SRI

Project Area

Iombo Suburban Railway Network

- 210 km of existing railway track rehabilitation
- 105 km of new track construction
 - 210 km Electrification
 - New EMU (E' Train) Procurement
- 210 km Signalling
- Relocation of 3200 (approx.) families

COLOMBO SUBURBAN RAILWAY PROJECT (L3425-SRI)

Loan	Milestones	Amounts (\$ millio	n)
	22 09 2016		
Approval	22.09.2010	Original Loan	\$ 10.0 Mn
Signing	28.10.2016	Interest Rate	2.0%
loan		Grace Period/Loan Period	05 vears / 25 Years
Effective	21.12.2016		
Original Closing	30.06.2023	Contract Award*	\$ 9.9 Mn
Revised Closing	••••••	Cumulative Disbursement*	\$ 5.67 Mn (57%)

Railway Development in New Govt. Policy (pg. 65)

- Colombo-Panadura-Veyangoda, Ragama-Katunayake-Negombo, and Maradana -Homagama rail lines will be converted into electric train routes and thereby ensure the public is provided with a luxury transport service similar to that planned for the buses.
- E-ticketing system will be provided and introduced for all train transportation.

Process

Output Approval Process

Railway Development : KV Line

✓ <u>Today :</u>

- ✓ Addresses two Corridors ; Avissawella Corridor and Horana Corridor
- ✓ Daily Ridership : 14,500
- ✓ Train Operation is limited to Peak Hours (Morning and Evening)
- ✓ Weakest Infrastructure among all 04 lines
- ✓ Unable to operate more trains due to limitations of Infrastructure

✓ After Development :

- ✓ Attract passengers from Bus and Car to Rail
- ✓ Dily Ridership in 2035: 200,000
- Trains operate uniformly throughout the day (train in every 7 minutes in Peak Hrs.)
- Park and Ride facility at every railway station (Parking for 100 cars and Bus Bays)
- ✓ Immediate solution to congestion in Colombo and High Level Road
- Isolated line ; ideal for electrification with less impact to people during construction

Railway Development : Main Line

✓ <u>Today :</u>

- ✓ Addresses Kandy Corridors ;
- ✓ Daily Ridership : 100,000
- \checkmark Uniform Train Operation throughout the day
- ✓ Infrastructure Maintained well by SLR

✓ After Development :

- ✓ Attract passengers from Bus and Car to Rail
- ✓ Dily Ridership in 2035:
- ✓ Trains operate uniformly throughout the day (train in every 3 minutes in Peak Hrs.)
- Park and Ride facility at every railway station (Parking for 100 cars and Bus Bays)
- Serves other lines, Ridership is high and Impact to passengers during construction - high

Passenger Demand Study

- We use this to,
 - Decide Passenger Volume for Peak Hour Peak
 Direction by year 2034
 - Decide Train Set Composition (in our case 6+6 EMU with capacity of 2400 passengers)
 - Decide Number of Train sets to operate in the line and whether the number of railway lines enough.
 - Obtain data for Financial Analysis

ExistingTraffic Data

Source: CoMTrans Study

٠

٠

Demand Study Decision of Number of Railway Lines

Railway Line	Section	Number of Trac							
		Existing	Future						
Kolani Vallov	Colombo - Padukka	1	2						
Kelalli valley	Padukka - Avissawella	1	1						
	Colombo - Ragama	3	4						
Main Line	Ragama - Veyangoda	2	3						
	Veyangoda - Rambukkana	2	2						
Coostalling	Colombo - Panadura	2	3						
	Panadura - Kaluthara	2	2						
Puttlam Line	uttlam Line Ragama - Negambo								

Decision on Train Set Composition : Number of Coaches : 6+6 coach EMU Capacity per Train Set : 2400 passengers

Track Alignment - Option Study

- We consider few possible solutions and use this to,
 - Decide best option for Horizontal Alignment which solves requirements and issues
 - Decide best option for Vertical Alignment
- Requirements and Issues are,
 - Social and Environment Safeguard, Land
 Acquisition, Level Crossings
 - Speed, Travel Time,
 - cost of construction

Kelani Valley Railway Development

- Option Studies
- Decision and reasons for such decisions
- Financial Analysis Option evaluation
- Operation and Time Saving to Passenger

Design Concept: Horizontal Alignment

Three Options considered

Option 1	Alignment with, curves straightened, but within the existing Railway ROW.	
Option 2	Alignment with speed limit of 70km/h and minimum radius of curve at 300m .	
Option 3	Alignment with speed limit of 80km/h and minimum radius of curve at 400m .	—

Yellow Dots indicate Railway Stations which are only 0.6 to 1.5 km apart

Design Concept: Horizontal Alignment

Design Concept: Horizontal Alignment

Design Concepts - Horizontal Alignment

Horizontal Alignment - Option Study Summary

Classification	Min Dodiuc	Max.	Additional La	Time	
Classification	IVIIII. Kaulus	Speed	Area	Estimated Cost	Saving
Option 1	120 m	40 km/h	29,209 m ²	USD 8.5 Mn.	26.4 min.
Option 2	300 m	70 km/h	110,022 m ²	USD 32.0 Mn.	31.4 min.
Option 3	400 m	80 km/h	171,996 m ²	USD 50.0 Mn.	31.8 min.

- ✓ Curves can be straightened to increase Speed
- ✓ This involves Land acquisition resulting high cost
- ✓ However, KV Line (in first 20 km section) has Railway Stations in every 0.6 to 1.5 km. This disallows the train to achieve the higher speeds.
- ✓ Therefore, even if we straighten curves, the commercial speed will not be increased correspondingly.
- ✓ Our expected outcome is to reduce travel time. But, this can not be achieved as expected due to existence of Railway Stations

So, after discussing (in about 04 meetings), Project Steering Committee , approved Option - 1

Design Concepts – Vertical Alignment

Four Options considered

Option 1	Elevated Line
Option 2	Underground Line
Option 3	Elevated + Underground Line
Option 4	Elevated + Underground + At grade Line

- Social and Environment Safeguard 2400 families in SLR Lands
- Land Acquisition Lands are expensive in the corridor
- Level Crossings 145 Level Crossings from Maradana to Padukka
- 'At Grade' construction require wider corridor (14.5 m wide)
- Cost of construction must select the low cost option which solve the issues

Design Concepts – Vertical Alignment

Railway Station Construction

Design Concept – Vertical Alignment

Railway Station Construction

Total Land Acquisitions for Station Construction –

"At grade" Construction : USD 36 Mn for Land Acquisitions

Elevated Construction : No Land Acquisition

Design Concepts – Vertical Alignment

Land Required, if constructed "at grade'

Elevated Construction ; No disturbance to Parallel Roads

Design Concept – Vertical Alignment **Parallel Roads** Total Length of Parallel Roads along KV Line – 09 km in 20 km Land Acquisitions for Parallel Road Construction -"At grade" Construction: 785 p of Land Acq. & Demolitions Elevated Construction : No Land Acquisition MIN. AT GRADE ROW Pangiriwatta 1st Lane

Design Concept – Vertical Alignment Level Crossings

Design Concept – Vertical Alignment Level Crossings – Vehicle Flow Based Analysis

	Location				Peak Hour	Total					
	Numin			2025 From	flow Peak	Number		Canacity			
Chainage	googleMan	Location	2017	Model	Direction	lanos		capacity	VIC	Floyated	lotes
	googleiviap	Dematagoda Rd	33 834	Model	2 100	2	2 199	1 / 00	1 57		lotes
1+240	1	Pasalina rd	92 905	85.000	5 452	6	1 919	1,400	1.37	- X	
1+700	2	Sri Nigrodharama mw	12 544	83,000	915	2	915	1,000	0.68	ĕ	Exprosoway ramp
2+900	5	Leelie Dengele Muu	22,044		1 555	2	1 555	1,200	1.20		Expressivay ramp
2+027	5		25,910		1,555	2	1,555	1,200	1.50		
3+360	0		8,108	47.000	2.075	2	531	1,200	0.44		
3+550	/		45,772	47,000	2,975	4	1,488	1,200	1.24		
3+800	8	Sri Jayawardenapura Mw	88,867	76,000	5,776	6	1,925	1,400	1.38	<u> </u>	
5+490	13	Muhandiram Rd	19,895		1,293	2	1,293	1,200	1.08	<u>S</u>	Flyovers
5+820	14	Kirimandala Mw	18,503	16,500	1,203	2	1,203	1,200	1.00		T I JOVOIO
6+110	15	Narahenpita Nawala Rd	30,203	20,000	1,963	2	1,963	1,200	1.64	\odot	Requires
7+350	18	D.M. Colombage Mw	18,027	15,000	1,172	2	1,172	1,200	0.98		(20)
8+950	22	B120 at Nugegoda	49,701	31,000	3,231	4	1,615	1,200	1.35		(=0)
9+270	23	Old Kespbewa	28,390	20,000	1,845	4	923	1,200	0.77		20 m from B120
9+930	24	Mirihana Rd	25,004	21,000	1,625	4	813	1,200	0.68		00m from Previous
13+370	31	Old Kottawa rd	26,233	12,000	1,705	2	1,705	1,200	1.42		
14+470	33	Pamunuwa RD	17,378	20,000	1,130	2	1,130	1,000	1.13		
17+520	41	Pannipitiya Malabe rd	14,519	14,000	944	2	944	1,000	0.94		
19+400	46	Athurugiriya Rd	26,918	24,000	1,750	2	1,750	1,200	1.46		
19+930	47	Kottawa Malabe Rd	8,049	11,000	523	2	523	1,200	0.44		00 m from Previous
	52	Galawila Rd	10,759	11,000	699	2	699	1,200	0.58		
	57	Athurugiriya Rd 2	20,141	26,000	1,309	2	1,309	1,200	1.09	Ø -	
25+010	58	Wimana Rd Level Crossing	3,468	,	225	2	225	800	0.28		
26+330	59	Panagoda Station Rd Level Crossing	4,391		285	2	285	800	0.36		
271260	60	Codegemergewette Rd Level Cressing	1.401		07		07	800	0.12	ă	

Cost of 20 Flyovers with Land Acquisition (RDA Estimate) = USD 311.5 Mn

28+720	63	Samadhi Mw	39		3	2	3	800	0.00	\otimes	
28+790	64	Palpolawatta Rd Level Crossing	1,364		89	2	89	800	0.11	\otimes	
28+980	65	Asiri Uyana Rd	319		21	2	21	800	0.03	\otimes	
29+060	66	Puwakwatta Rd Level Crossing	7,407	6,000	481	2	481	800	0.60	\otimes	
29+600	67	Meegoda Station	8,618	5,000	560	2	560	800	0.70	\otimes	
30+300	68	Udagewatte Rd	2,032		132	2	132	800	0.17	\otimes	
30+820	69	Madulawa Rd	5,482		356	2	356	800	0.45	\otimes	
31+850	70	Opathaella Rd	1,722		112	2	112	800	0.14	\otimes	
33+630	71	Kurugala Rd	2,546		165	2	165	800	0.21	\otimes	
34+440	72	Level Crossing C4	-		-	2	-	800	-	\otimes	
34+660	73	Polwatta Rd C1	-		-	2	-	800	-	8	
34+750	74	Polwatta Rd C2	1,816		118	2	118	800	0.15	\otimes	
34+900	75	Padukka Road Level Crossing	11,165	9,000	726	2	726	1,200	0.60	\otimes	

Vert. Alignment: Grade Separation Analysis

- Based on Vehicle Flows with Traffic Simulation
- Based on UN Criteria of Train Vehicle Units (TVU)
 - Defines a Grade Separation is needed when TVU>100,000

Vert. Alignment : Vehicle Flows at Rail Crossings

Design Concept – Vertical Alignment

Vertical Alignment (Option Study)

Option 1	Elevated Line – Lowest Cost and high Revenues
Option 2	Underground Line – High Cost and High Revenues
Option 3	Elevated + Underground Line - High Cost and High Revenues
Option 4	Elevated + Underground + At grade Line – High Cost and Low revenues

✓ So, after discussing (in about 04 meetings), Project Steering Committee , approved Option - 1

Classification		Option 1	Option 2	Option 3	Option 4				
	Elevated	18.9 km	-	13.74 km	9.5 km				
Structure Under ground		-	18.17 km	3.1 km	3.1 km				
	At grade	1.86 km	2.59 km	3.92 km	8.16 km				
Constr	uction Cost	USD 883.6 Mn.	USD 900.9 Mn.	USD 948.0 Mn.	USD 921.5 Mn.				
Land acquisition Cost		USD 91.5 Mn.	USD 89.9 Mn.	USD 91.4 Mn.	USD 98.2 Mn.				
То	tal Cost	USD 975.1 Mn.	USD 990.8 Mn.	USD 1,039.4 Mn.	USD 1,019.7 Mn.				

Financial Analysis with Comparison of Options

- ✓ Passenger and Parcel Demands by 2035 were considered.
- ✓ Today, Fare per Passenger km is Rs. 1.10. Once this is increased to Rs. 2.20, the annual Operation and Maintenance Cost will be covered and 20% of Capital will be recovered in 30 Years. This is a favourable situation.
- ✓ Three Solution Options were evaluated purpose.
- Elevated Construction from Colombo to Makumbura and then 'At Grade': Lowest Construction Cost because least Land Acquisition.
 Revenue from Transit Oriented Development (ToD) is high
- ✓ 'At Grade' construction throughout with fly overs for 20 Major Roads
 : Construction Cost is high and ToD revenues = 0
- 'At Grade" construction with throughout with Level Crossing Protection Systems for Roads : Moderate Construction Cost with high annual cost due to Fuel and Man-Hour wastage. Very Low human safety and Tod Revenues = 0

The KV Line's Investment Justification : Economic and Financial

Hard wore Economic Analysis and Economic Sensitivity Analysis

-EIRR = 15.77%. -ENPV (USD Millions) = 325.47. -C/B ratio = 1.29.

Economic Sensitivity Analysis - It is a moderately robust project with changes of demand, costs, construction period and the change of other key input variables together.

Hard Core Financial Analysis, Source of Funds and Financial Sensitivity Analysis.

- The KV Line's O&M Cost fully recovered.
- Within 50 years, 28% of capital costs will be recovered.
- Within 30 years, 21% of capital costs will be recovered.
- This is a very commendable situation and many heavy railways around the world are not even recovering full O&M.

Investment Costs Analysis

Cost per Km.

- Line distance-wise (Km. 60.00) cost per km. USD Million 23.73.
- Total investment costs USD Million 1424.32.
- Annual average O&M cost between USD Million 19 to 27.
- All these costing figures are comparable with international elevated railway investment.

Poverty Impact

Assessment Analysis

(PIR) and Extended Costs

Benefits Analysis (ECBA)

The overall PIR value

of the KV Line 73.25.

benefits will go for low

This shows more

and mid income

ECBA - adjusting

economic analysis to

ECBA shows KV line

environmental analysis.

project is viable project.

people.

social and

Project Impact Monitoring Framework Analysis (PIMF)

- PIMF shows that identified 33 baseline indicators under impact, outcome and output will definitely be improved in direct and indirect project impact areas.
- Later it spillover to the regional and national economy with full operation of the project.

Conclusion

Economic and financial analysis showed all E&F aspects will be comprehensively satisfied by the KV Line project, therefore can recommend project for implementation with greater care for cost minimizing value engineering solutions with more focus on new railway business models.

Maradana – Avissawella (64km) : Cost Comparison Between

Elevated & At grade Construction

No	Classification	Elevated Cost USD (Mn)	At grade Cost USD(Mn)
1	Construction costs		
1.1	Demolition Cost	1.30	1.30
1.2	Elevated construction	420.50	
1.3	Bridge construction	2.70	3.50
1.4	Under Pass Construction	12.20	12.16
1.5	Station Construction	64.40	64.37
1.6	Embankment	202.20	402.20
1.7	Track Construction	45.83	45.83
1.8	Flyovers		311.50
2	Resettlement costs	70.80	169.44
3	Electrification costs	30.12	30.12
4	Signaling costs	78.41	78.41
5	Telecommunication	25.00	25.00
6	Rolling stock costs	300.00	300.00
7	Utility shifting costs	1.76	1.76
8	Environment mitigation costs	19.39	19.39
	Sub Total – 1	1,274.61	1,464.98
9	Construction supervision costs (4%)	50.98	58.60
	Sub Total – 2	1,325.59	1,523.58
10	Physical contingencies (5%)	66.28	73.25
11	Price contingencies (5%)	66.28	73.25
	Total Cost	1,458.15	1,670.08

Financial analysis on KV line's three options

Options	Investment (USD Millions)	Income (30 year) USD Millions	FIRR	FNPV	WACC	Investment recovery	The best option
Elevated	1274.61 (Ignored O&M and Replacement cost of 719.12)	2277 (including 50% income from TOD)	3.04%	0.0	3.04%	100.00 (30 years)	1
At-grade Flyovers in busy roads	1464.98 (Ignored O&M and Replacement cost of 719.12)	1146 (No TOD income)	Negative	Minus	FIRR <wac C</wac 	21% (30 years)	3
At-grade 56 level crossing	1153.48 (Ignored O&M and Replacement cost of 719.12)	1146 (No TOD income)	Negative	Minus	FIRR <wac C</wac 	23% (30 years)	2

Therefore, by looking at the results of the financial analysis, the best option is elevated option.

KV Line Road Map

Need Financing only in 2023 (with Fund Flow of 2023 – USD 100 Mn, 2024 – USD 100 Mn , 2025 – USD 200 Mn etc.)

Kelani Valley Line Development Roadmap for Stage - I (Maradana to Padukka : 35 km)																																												
					De	sigr	n Ph	ase	: .								Bid	ldir	ng P	erio	bd							Со	sns	truc	tior	n												
CSPR Projects		20	17			20	18		2019			2020			2021				2022				2023				2024				2025				2026					20)27			
KV Line Development									Γ																Γ																\square			
Kelani Velley Line (Double Line Elevated from Maradana to Malapalla)						De	sign	(Civ	ril ar	nd Sy	yster	ms)						_	tt	E	Bid	din	g(Ci	ivil)]-,			Cor	nstr	uct	ion	- Ci	vil V	Vor	ks (MD)A-N	Иal	apa	alla)				
Kelani Velley Line (Double Line 'at grade' from Malapalla to upto Padukka) ic																												Bido	ding	(Civ	il)	-	(Con	stru	ictio	on - ((Ma	alap	alla	- PD	K)		
Kelani Velley Line (Procurement of Systems and Rolling Stock)																		[De	sign F	Rollin	g Sto	c k		ł	Bk	dding Sto	(Rolli ck)	• *	Bic (Sys	iding tems)		Sup	In pply	sta / of	llat Ro	ion IIin	of S g St	Syst ock	em	s			
																			Π																	\square					\square		\square	\square
Enablers of KV Line Development	⊢																		Щ						⊢									_		\square						\vdash	\vdash	
Environment Impact Assessmant (EIA) Report approved by Central Environmatal Authority (CEA)													C	EIA																														
Resettlement of Project Affected																								Γ	Γ																\square			
Families from Maradana to				L	_		_	S	oci	ial F	Rese	ettle	me	nt		_			11																									
Nugegoda and beyond (to complete 50% of the resettlements)																																												
Land Acquisition from Maradana to																			Π																									
Nugegoda and beyond (to complete	1										Lan	d A	qu	isiti	on				Ч																									
50% of the Land Acquisitions)																																												

Operation Plan

<u>Peak Periods</u>: Train in every 07 Minutes

Off-Peak Periods : Train in every 15 Minutes

Peak Periods : From 07.00 to 09.00 am and from 04.00 to 06.00 pm

Other Features

- 1. Planned Bus Operation upto the Railway Stations
- 2. Car Parking (about 100 cars) at Railway Stations
- 3. Platforms and trains at same level to reduce Boarding Time and to enable Universal Access
- 4. Train Stopping is aligned with Passenger Queues at Platforms
- 5. Comfortable Trains with wider doors
- 6. Reliable and timely service

<u>Train Operation Highlights after</u> <u>Development</u>

Maradana – Padukka

- Travel Time : 64 Minutes
 - Time Saving for Train Passenger : 26 Minutes (assuming trains run on time today)
 - Time Saving for Bus Passenger : 100 Minutes

<u>Train Operation Highlights after</u> <u>Development</u>

Maradana – Homagama

- Travel Time : 42 Minutes
 - Time Saving for Train Passenger : 22 Minutes (assuming trains run on time today)
 - Time Saving for Bus Passenger : 79 Minutes

Train Operation Highlights after Development

Maradana – Maharagama

- Travel Time : 26 Minutes
 - Time Saving for Train Passenger : 14 Minutes (assuming trains run on time today)
 - Time Saving for Bus Passenger : 45 Minutes

Cotta Road – Designed to generate revenue through ToD

Nugegoda - Designed to generate revenue through ToD

Veyangoda/Gampaha - Designed to generate revenue through ToD

Small Scale 'At Grade' Stations

Perspective views - Bird eye view of the station

Ground Floor Plan (Concourse & Platform)

Please view CSRP.lk For more details

THANK YOU